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Abstract. Many proteins have been shown to cap the 
fast growing (barbed) ends of actin filaments, but none 
have been shown to block elongation and depolymer- 
ization at the slow growing (pointed) filament ends. 
Tropomodulin is a tropomyosin-binding protein origi- 
nally isolated from red blood cells that has been local- 
ized by immunofluorescence staining to a site at or 
near the pointed ends of skeletal muscle thin filaments 
(Fowler, V. M., M. A., Sussman, P. G. Miller, B. E. 
Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120: 
411--420). Our experiments demonstrate that tro- 
pomodulin in conjunction with tropomyosin is a 
pointed end capping protein: it completely blocks both 
elongation and depolymerization at the pointed ends of 
tropomyosin-containing actin filaments in concentra- 
tions stoichiometric to the concentration of filament 
ends (Kd ~< 1 riM). In the absence of tropomyosin, 

tropomodulin acts as a "leaky" cap, partially inhibiting 
elongation and depolymerization at the pointed fila- 
ment ends (Kd for inhibition of elongation = 0.1-0.4 
/zM). Thus, tropomodulin can bind directly to actin at 
the pointed filament end. Tropomodulin also doubles 
the critical concentration at the pointed ends of pure 
actin filaments without affecting either the rate or ex- 
tent of polymerization at the barbed filament ends, in- 
dicating that tropomodulin does not sequester actin 
monomers. Our experiments provide direct biochemi- 
cal evidence that tropomodulin binds to both the ter- 
minal tropomyosin and actin molecules at the pointed 
filament end, and is the long sought-after pointed end 
capping protein. We propose that tropomodulin plays a 
role in maintaining the narrow length distributions of 
the stable, tropomyosin-containing actin filaments in 
striated muscle and in red blood cells. 

rIS assembly in muscle and nonmuscle cells is reg- 
ulated in part by proteins that cap the fast growing 
(barbed) ends of actin filaments. All of the well- 

known capping proteins, gelsolin, villin, and capZ, block 
elongation and depolymerization at the barbed filament end, 
and they are also capable of nucleating actin polymerization 
(for reviews see Pollard and Cooper, 1986; Weeds and 
Maciver, 1993). These proteins play various roles in differ- 
ent cells at different times. For instance, capZ might provide 
nucleation sites in the Z band for thin filament formation 
during myofibril assembly in the development of muscle cells 
(Schafer et al., 1993). On the other hand, in some nonmus- 
cle cells, capping proteins may play an important role in the 
sudden changes in the state of actin polymerization as- 
sociated with stimulation of these cells (for a recent review, 
see Zigmond, 1993). 

Considerably less is known about the molecules responsi- 
ble for regulating actin filament assembly at the slow grow- 
ing (pointed) end. Evidence for the existence of pointed end 
capping proteins in muscle and nonmuscle cells comes from 
several observations. First, there is no elongation at the 
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pointed ends of actin filaments when G-actin is added to iso- 
lated myofibrils (Sanger et al., 1984; Peng and Fischman, 
1991); furthermore, the obstacle to elongation can be re- 
moved by extraction with high salt (Ishiwata and Funatsu, 
1985). Second, under some conditions, elongation at the 
pointed filament end of the short actin filaments in the red 
blood cell membrane skeleton is also blocked (Pinder et al., 
1986). Finally, Tilney and colleagues (1992) have reported 
that there is no growth from the pointed ends of the actin fila- 
ments in the comet-like tail of Listeria monocytogenes in 
macrophages or from the pointed ends of the actin filaments 
in the mature hair cells of chicken cochlea (Tilney and 
DeRosier, 1986; Tilney et al., 1992). Depolymerization 
from the pointed ends of actin filaments is also blocked in 
muscle myofibrils since removal of monomeric actin by 
repeated washes of the myofibrils has no effect on the actin 
filaments (Perry, 1952; Weber, 1959). By itself, this obser- 
vation does not necessarily indicate the presence of a capping 
protein since depolymerization from the pointed end can be 
blocked under some conditions by tropomyosin, which binds 
along the length of actin filaments (Broschat et al., 1989, 
1990; Weigt et al., 1990). The only known pointed-end-cap- 
ping protein that blocks elongation, but not depolymeriza- 
tion, is DNase I, an extracellular protein whose physiologi- 
cal interactions with actin have not yet been clearly defined 
(podolski and Steck, 1988; Weber et al., 1994). 
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Recently, tropomodulin has been localized to a site at or 
near the pointed ends of the thin filaments in rat psoas skele- 
tal muscle by immunofluorescence staining of isolated 
myofibrils at resting and stretched lengths (Fowler et al., 
1993). Tropomodulin is a 40-kD tropomyosin-binding pro- 
tein that binds to one end of tropomyosin and was originally 
isolated from the red blood cell membrane skeleton (Fowler, 
1987, 1990; Sung et al., 1992). The amino acid sequence of 
human red blood cell tropomodulin (Sung et al., 1992) is 
86 % identical to chicken skeletal muscle tropomodulin (Bab- 
cock and Fowler, 1994), indicating that tropomodulin is a 
highly conserved protein. In red blood cells, tropomodulin 
is associated with the short tropomyosin-containing actin 
filaments that form the "hubs" of the spectrin-actin lattice 
(Ursitti and Fowler, 1994). Estimations of relative stoichi- 
ometries in skeletal muscle and red cells suggest that there 
are between one and two tropomodulin molecules for each 
actin filament (Fowler et al., 1993). Tropomodulin is also 
found in the vicinity of the pointed ends of the thin filaments 
in cardiac muscle (Gregorio, C. C., and V. M. Fowler, un- 
published observations) and is a component of the mem- 
brane skeleton in lens fiber cells (Woo and Fowler, 1994). 

Here, we present evidence that tropomodulin in nanomo- 
lar concentrations completely blocks elongation and depoly- 
merization at the pointed ends of tropomyosin-actin illa- 
ments. At higher concentrations, tropomodulin partially 
inhibits elongation and depolymerization at the pointed ends 
of pure actin filaments, demonstrating that tropomodulin can 
also bind directly to actin at the pointed filament end. We 
propose that pointed-end capping by tropomodulin helps to 
maintain the constant lengths of the tropomyosin-contalning 
actin filaments in skeletal muscle and in the red cell mem- 
brane skeleton. 

Materials and Methods 

Proteins 
Act/n. Rabbit skeletal muscle actin was prepared from an acetone powder 
of rabbit muscle as previously described (Murray et al., 1981) with some 
modifications in the chromatography step (Young et al., 1990). Pyrenyl 
labeling of muscle actin was carried out according to Kouyama and Mihashi 
(1981) with the modifications described previously (Northrop et al., 1986). 
Actin was stored in liquid nitrogen and defrosted as previously described 
(Young et al., 1990). The critical concentration of various actin prepara- 
tions varied between 0.08 and 0.15/~M for uncapped filaments and between 
0.4 and 0.7 ~M for filaments capped at their barbed ends with galsolin. 

Tropomodu//n. Recombinant chicken skeletal muscle tropomodulin was 
expressed in Escherichia coli as a fusion protein with glutathione S-trans- 
ferase (GST) I and purified to homogeneity by adsorption to glutathione- 
Sepharose followed by thrombin cleavage to release the GST moiety and a 
final step of ion exchange chromatography, as described elsewhere (Bah- 
cock and Fowler, 1994). The recombinant tropomodulin obtained by this 
procedure contained a fusion peptide of 15 amino acids at the NH2- 
terminus that was derived from the GST linker region (Guan and Dixon, 
1991). In most experiments, unless otherwise indicated, the recombinant 
tropomodulin was also missing the first five amino acids at the NH2- 
terminus. Comparisons with native tropomodulin purified from red blood 
cells (Fowler, 1990) show that tropomodulin and not the fusion peptide is 
responsible for the pointed-end capping effects. In the absence of tropomyo- 
sin, native tropomodulin inhibited the initial rate of elongation to a similar 
extent, as did recombinant short tropomodulin, and it also lowered the 
final extent of polymerization. In combination with tropomyosin, native 
tropomodulin was effective in very low concentrations comparable to the 
recombinant tropomodulin (data not shown). Furthermore, a comparison 

1. Abbreviation used in this paper: GST, glutatione S-transferase. 

of the short- with the full-length recombinant tropomodulin preparations in- 
dicates that the first five amino terminal residues are not of major impor- 
tance for tropomodulin function: both the short and long protein inhibit 
elongation of pure actin with a similar/G, and both increase the critical 
concentration to about twice the control value (data not shown). 

Other Prote/ns. Tropomyosin was purified from rabbit skeletal muscle 
as described by Bailey (1948). Gelsolin was a generous gift from J. Bryan 
(Baylor College of Medicine, Dallas, TX), and was prepared as described 
previously (Bryan, 1988). Spectrin-actin complexes, "crude spectrin; were 
prepared as described by Cohen and Branton (1979) and stored at -20°C 
in 50% ethylene glycol. Vitamin D-binding protein, which runs as single 
band on SDS gels, was purchased from Calbiochem-Novabiochem Corp. 
(La Jolla, CA). 

Protein concentrations were determined for actin and gelsolin by light 
absorption, using E290 = 24.9 mM-l.cm -1, and E2s0 = 150 mM-l.cm -t ,  
respectively; for tropomodulin and tropomyosin by Lowry's method, using 
bovine serum albumin as a standard; and for vitamin D-binding protein, 
according to weight dissolved. 

Actin Polymerization Measurements 

Fluorescence and Kinetic Measurements. Changes in actin polymeriza- 
tion were calculated from fluorescence measurements of pyrenyl-actin (ex- 
citation = 366.5; emission = 407 nm) as indicated in the legends (usually 
~10% pyrenyl-actin) (Weber et ai., 1987a), using a PTI photon counting 
fluorimeter. Measurements were standardized against a Raman excitation 
peak (excitation = 357 ran; emission = 407 nm). Absolute readings from 
different experiments are not comparable because varying slit widths were 
used. 

All experiments were carried out at 20°C with Mg-actin, the physiologi- 
cal form of actin (Weber et al., 1969; Kitasawa et al., 1982). The conver- 
sion to Mg-actin was carried out as previously described (Young et al., 
1990). 

Measurements of elongation and depolymerization rates at the pointed 
filament end were carried out as previously described (Walsh et al., 
1984a,b; Northrop et al., 1986; Young et al., 1990) in a medium containing 
10 mM imidazole buffer, pH 7.4, 0.1 M KC1, 2 mM MgClz, 1 mM azide, 
1 mM dithiothreitoi, 0.5 mM ATP, 5.0 mM EGTA, and 10 nM gelsolin- 
actin dimers to ensure full capping of the barbed ends after dilution from 
the stock solution. During depolymerization measurements, 2 t~M vitamin 
D-binding protein was also included to maintain the concentration of free 
G-actin at <10 nM throughout the whole time course. Vitamin D-binding 
protein only sequesters actin monomers and has no effect on depolymeriza- 
tion (weber et al., 1994). 

Endpoints of polymerization were measured after overnight incubation 
of actin in the presence of actin nuclei to ensure completion of polymeriza- 
tion. We used spectrin-actin complexes for the polymerization of uncapped 
actin with free barbed filament ends. 

Known number concentrations of free pointed filament ends were ob- 
tained by copolymerizing actin (usually 10 ~M) with gelsolln or gelsolin- 
actin dimers in the presence of calcium. These are strong barbed-end 
capping and nucleating proteins that produce one filament per geisolin 
according to our measurements, as has been published previously for villin 
(Walsh et al., 1984a,b; Coleman and Mooseker, 1985; Northrop et al., 
1986). Average sizes for filaments used in elongation and depolymerization 
experiments arc given in the legends (average length = number of  mono- 
mers/actin fi/ament). For the preparation of tropomyosin-actin filaments 
used as nuclei for elongation or for depolymerization experiments, 
tropomyosin in excess over the amount necessary for filament saturation 
(excess of '~0.5/zM) and when present, tropomodulin (excess of 0.1-2.5 
/~M) were added before copolymerizatfon was started by the addition of salt. 

Known number concentrations of free barbed filament ends were ob- 
tained by using spectrin-actin complexes (Cohen and Branton, 1979). 
These were used after a fourfold dilution of the 50% ethylene glycol stock 
solution into 0.3 mM phosphate buffer, pH 7.6. The concentration of the 
barbed filament ends was determined by titration with gelsolin. Briefly, the 
spectrin-actin complexes were preincubated with increasing concentrations 
of gelsolin-actin dimers in polymerizing solution for ,x,1 h, and the extent 
of capping was evaluated from the extent of inhibition of elongation. Cap- 
ping increases with increasing gelsolin-actin (in 5 mM EGTA) nearly 
stoichiometrieally (/~ of gelsolin-actin for barbed filament ends = 0.1 
nM; Selve and Wegner, 1986). Therefore, the concentration of barbed ends 
= 2 × the concentration of gelsolin-actin required to inhibit elongation by 
50%. In some assays, spectrin-actin complexes were preelongated with 
G-actin overnight before the elongation assays. For example, in the experi- 
ment shown in Fig. 7 B, 34 nM spectrin-actin complexes were incubated 
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overnight with 1.8/~M G-actin in polymerizing medium (average filament 
length = 53 monomers~filament) in the presence or absence of 0.5 t~M 
tropomyosin and 0.5/~M tropomodulin, if also present. 

Calculations of  Lowest Possible IG for  TropomoduUn Binding to Ac- 
tin Monomers. If tropomodulin had a g0 of 100 I~M for monomer binding, 
and the free monomer concentration in the presence of tropomodulin was 
0.14/zM (critical concentration indicated by the control intercept with the 
G-actin slope in Fig. 3), then it can be calculated that 10/~M tropomodulin 
would sequester 14 nM actin monomer, thus raising the total G-actin con- 
centration (free + sequestered) to 0.154/zM. However, we estimated by eye 
that a line through the tropomodulin data with an intercept at 0.154/,~M 
G-actin fits the data points significantly less well than the line through the 
control points with an intercept at 0.14/~M actin (critical concentration). 

Calculation of  Steady-State G-Actin Concentrations. We used the ex- 
pression 

G-actin = total actin - F-actin; 
F-actin = [fluorescence - a (total actin)]/[b-a]; 
rearranged from fluorescence = b (F-actin) + a (G-actin). 

The value for a, which is the fluorescence value for 1/~M G-actin, was de- 
termined from the slope of fluorescence versus increasing concentrations 
of G-actin (e.g., Fig. 3, crosses). The value for b, which is the fluorescence 
value for 1 /~M F-actin, was determined either from the slope of F-actin 
fluorescence versus increasing concentrations of total actin (e.g., Fig. 3, 
closed circles) or from the fluorescence of a high actin concentration, usu- 
ally 3 t~M, assuming 2.9/zM to be in the F-actin state. 

Results 

The Effects of Troporaodulin on Actin Polymerization 
in the Absence of Tropomyosin 
Troporaodulin Reduces the Rate of Elongation at the 
Pointed End of the Actin Filament. Tropomodulin is pro- 
posed to be specifically associated with the terminal tropo- 
myosin molecules at the pointed ends of muscle thin fila- 
ments (Fowler et al., 1993). In addition, tropomodulin might 
also be bound directly to domains II and IV of actin, which 
are fully accessible only at the pointed filament ends (Holmes 
et al., 1990; Kabsch et al., 1990). We investigated this pos- 
sibility by checking whether tropomodulin affected the 
kinetics of actin assembly at the pointed end of tropomyo- 
sin-free actin filaments. Indeed, tropomodulin inhibits elon- 
gation at the pointed end, showing that it can bind directly 
to actin at the pointed filament end (Fig. 1). For these experi- 
ments, short gelsolin-capped actin filaments served as nuclei 
for elongation, and a small amount of pyrenyl-actin (usually 
"~10%) was added to the native actin as an indicator of poly- 
merization. This makes it possible to estimate the extent of 
polymerization from the increase in fluorescence. Gelsolin 
was used to cap the barbed filament ends since otherwise 
elongation primarily occurs at the 10 times faster barbed end 
(for a review see Pollard and Cooper, 1986). The initial rate 
of polymerization decreased with increasing tropomodulin 
concentrations and at saturation was reduced to 20-30% of 
the control rate (Fig. 1 B). The inhibition was half maximal 
at a tropomodulin concentration close to 0.1 /~M (abscissa 
intercept of the double-reciprocal plot). This value varied be- 
tween 0.1 and 0.4/xM for different preparations of actin and 
tropomodulin. 

Tropomodulin Reduces the Rate of Depolymerization at 
the Pointed End of the Actin Filament. Tropomodulin also 
reduces the rate of depolymerization from the pointed fila- 
ment end (Fig. 2 A): the rate was ,v40 % of the control at 
saturating concentrations of tropomodulin (Fig. 2 B). To en- 
sure that depolymerization went to completion in these ex- 
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Figure 1. Effect of tropomodulin on the elongation rate of gelsolin- 
capped actin filaments. (A) Raw data: Elongation was initiated by 
the simultaneous addition of gelsolin-capped actin filaments and 
polymerizing salts to a 1.4-#M G-actin solution (10% pyrenyl- 
actin), containing the indicated concentrations of tropomodulin 
(Tread) and in addition, 10-riM gelsolin-actin complexes as de- 
scribed in Materials and Methods. The gelsolin-capped actin fila- 
ments were prepared by copolymerizing 10 #M actin with 0.13 pM 
gelsolin overnight to obtain an average size of 75 actin molecules 
per filament, and were diluted to a final concentration of 0.2 ttM 
F-actin and 2.7 nM gelsolin in the assay. (B) The normalized initial 
rates (rate divided by control rate) plotted against increasing tropo- 
modulin concentrations using the full-length recombinant tropo- 
modulin with 2.4 #M G-actin; the gelsolin-capped nuclei for elon- 
gation had an average size of 20 actin monomers per gelsolin (5 nM 
gelsolin). The inset is a double-reciprocal plot of the extent of satu- 
ration of the pointed ends with tropomodulin [l-(rate/control rate)] 
vs tropomodulin concentration, calculated from the data in B. The 
abscissa intercept indicates a Kd of •0.1 I~M. 

periments, we measured the depolymerization of gelsolin- 
capped actin filaments in the presence of an excess of vitamin 
D-binding protein. This protein sequesters virtually all 
of the newly released G-actin (Ks for monomeric actin = 
10 .-9 M; see Lead et al., 1989) and maintains the concen- 
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Figure 2. Effect of tropomodulin on the depolymerization rate of 
gelsolin-capped actin filaments. (A) Time course of depolymeriza- 
tion in the presence of increasing concentrations of tropomodulin. 
The ordinate gives the natural log of the fraction of the total actin 
that is still polymerized: In (fluorescence - endpointfluorescence)/ 
(initial fluorescence - endpoint fluorescence). The slopes = kojr 
(free pointed ends) decrease with increasing saturation of the 
pointed ends with tropomodulin as a result of the decrease in the 
concentration of free pointed ends. Depolymerization was initiated 
by diluting 50 #1 of 10 #M F-aetin (10% pyrenyl-actin) copolymer- 
ized with 0.1 #M gelsolin, into 1 ml polymerizing solution contain- 
ing vitamin D-binding protein (see Materials and Methods) and 
increasing concentrations of tropomodulin as indicated by the num- 
bers on the lines (same preparation as in B). The gelsolin-capped 
actin filaments had an average size of 100 actin molecules per gelso- 
lin (average length of,~ 250 nm). (B) Decrease in the concentration 
of free pointed ends with increasing tropomodulin concentration. 
The ordinate values give the fraction of the free uncapped pointed 
ends: Slopes in A/control slope (actin alone). (InseO Double 
reciprocal plot of the fraction of tropomodulin-capped pointed ends 
[1 - (slope~control slope)] vs tropomodulin concentration, calcu- 
lated from the data presented in B. 

tration of free G-actin <1 nM, preventing any reassociation 
with the filament. Under these conditions, the time course 
of depolymerization (Fig. 2 A) is exponential either in the ab- 
sence or presence of tropomodulin, as indicated by the 
straight slopes of the natural log of fluorescence against time 
(Fig. 2 A). The exponential time course is caused by the ex- 
ponential length distribution of the actin filaments (for a re- 
view see Oosawa and Asalmra, 1975), which apparently was 
not disturbed by tropomodulin. 

Tropomodulin Does not Sequester Actin Monomers, but 
It Increases the Critical Concentration for the Pointed 
Filament End. Tropomodulin decreased the extent of poly- 
merization when the barbed filament ends were capped by 
gelsolin (Fig. 1 A). This would be expected if tropomodulin, 
as DNase I, sequestered actin monomers. Sequestration of 
actin monomers decreases the concentration of polymeriz- 
able actin and, therefore, would be expected to reduce the 
extent of polymerization whether or not barbed ends are 
capped. However, in the absence of gelsolin, neither the ini- 
tial time course (see below, Fig. 7 A) nor the final extent of 
polymerization (Fig. 3) were affected by high concentrations 
of tropomodulin (10/~M). From the data in Fig. 3 we esti- 
mated (see Materials and Methods) that the Ks of tropo- 
modulin for actin monomers would have to be/>100 ttM, as- 
suming that it binds monomers at all. 

Therefore, since tropomodulin lowers the extent of poly- 
merization without sequestering monomers, it must be rais- 
ing the concentration of free monomeric actin at steady state 
with the gelsolin-capped actin filaments, i.e., the critical 
concentration for the pointed filament end must be in- 
creased. We measured the final extent of polymerization at 
the pointed filament end with increasing actin concentrations 
in the presence and absence of 4/zM tropomodulin (Fig. 4). 
In this experiment, tropomodulin increased the critical con- 
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Figure 3. Tropomodulin does not increase the steady-state actin 
concentration when the barbed ends are not capped. Increasing 
concentrations of actin (10% pyrenyl-actin) were polymerized (nu- 
cleated by 0.8 nM spectrin-actin complexes) in the absence (closed 
circles; control) and in the presence of 10/~M tropomodulin (open 
circles). The endpoints of fluorescence were read after 24 h. The 
critical concentration is given by the intercept with the line of 
G-actin fluorescence (crosses). Note that the open circles are su- 
perimposed on the control curve. 

The Journal of Cell Biology, Volume 127, 1994 1630 



1200 

1000 

o 800 

c 600 o u 
.= 

u. 

2O0 

~,g / G-Actin 

0 . . . .  ." - - "  - "  , • , • , 

0.0 1.0 2.0 3.0 4.0 

Actin, ~M 

Figure 4. Increase in the critical concentration for the pointed fila- 
ment end by 4 #M tropomodulin. Increasing concentrations of actin 
were polymerized overnight in the absence (closed circles; control) 
and in the presence (open circles) of 4/~M full-length tropomodu- 
lin. The concentration of nuclei in the assay (i.e., pointed filament 
ends) was 4 nm with an average size of 20 actins per gelsolin. The 
critical concentration is indicated by the intercept between the 
F-actin line (circles) and the G-actin line (crosses). 

centration at the pointed filament end from 0.5 to 1.0 ftM. 
In other experiments with different tropomodulin and actin 
preparations (data not shown), saturating concentrations of 
tropomodulin increased the critical concentration about two- 
fold, to values between 1.0 and 1.4 #M for a range of control 
critical concentrations from 0.5 to 0.7 /~M. Saturation of 
tropomodulin's effect on the critical concentration at the 
pointed end was achieved at tropomodulin concentrations 
between 4 and 10 #M (data not shown). 

There is no internal inconsistency between the tropomod- 
ulin-induced increase in the critical concentration for gel- 
solin-capped actin and the absence of any tropomodulin 
effect without gelsolin. Because the on-rate constant for ac- 
tin binding at the barbed filament end is 10 times greater than 
the pointed end on-rate constant, the critical concentration 
of actin when both ends are uncapped is close to the value 
for the barbed filament end alone (Walsh et al., 1984b). The 
predominant influence of free barbed ends on the critical 
concentration is emphasized by our previous observation 
that the critical concentration increases relatively little, even 
when 50% of the barbed ends are capped (Northrop et al., 
1987; Young et al., 1990). Indeed, the critical concentration 
approaches the value for the pointed end only when the ex- 
tent of barbed end capping exceeds 90 %. 

In summary, tropomodulin only binds to actin that is in- 
corporated into the pointed end of the filament. In the 
absence of tropomyosin, tropomodulin partially inhibits 
elongation and depolymerization, and it increases the con- 
centration of free actin monomer at steady state with the 
pointed filament end. 

The Effect o f  Tropomodulin on Polymerization in the 
Presence of  Tropomyosin 

Elongation in the Presence of  T~opomyosin and Tropomod- 
ulin. One might expect tropomodulin to bind more tightly 

to the pointed end if the actin filaments are saturated with 
tropomyosin since tropomyosin offers a second binding site 
for tropomodulin with a similar affinity (Kd = 0.2 ttM; 
Fowler, 1987; Babcock and Fowler, 1994) as the binding site 
on the terminal actin molecule for tropomodulin (Kd for in- 
hibition of elongation = 0.1-0.4/~M, 0.1 #M in Fig. 1 B). 
Thus, the tropomodulin concentration necessary for half 
maximal inhibition of the elongation of tropomyosin-actin 
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Figure 5. Effect of tropomodulin on elongation at the pointed end 
of tropomyosin-actin filaments. (A) Time course of F-actin forma- 
tion. The elongation assay was carried out as described for Fig. 1, 
except that the assay medium contained tropomyosin (0.2 #M in ex- 
cess over that bound to actin) and tropomodulin (numbers on the 
curves represent nanomoles of tropomodulin) and the nuclei for 
elongation consisted of tropomodulin-containing tropomyosin- 
actin filaments (75 actin molecules per filament) that had been 
copolymerized overnight. The concentration of nuclei in the assay 
(i.e., pointed filament ends) was 2.7 nM and the final actin concen- 
tration in the elongation assay was 1.4 #M G-actin (10% pyrenyl- 
actin). 3 and 6 nM total tropomodulin were introduced into the as- 
say along with the actin nuclei for elongation, while 200 nM 
tropomodulin was added at the start of the elongation assay. The 
controls did not contain any tropomyosin. (B) Time course of 
G-actin disappearance replotted from A. The ordinate values [In 
(]inal fluorescence -fluorescence at time t)/(final fluorescence] are 
proportional to polymerizable G-actin (total G-actin - critical 
concentration) at different time points as a fraction of the initial 
polymerizable actin at time 0. 
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filaments was very low: 3 nM total tropomodulin reduced the 
rate to <10% of the control (Fig. 5 A). In this experiment, 
the concentration of ends was 2.7 nM; therefore, most of the 
tropomodulin must have been bound to the pointed ends, and 
the free concentration of tropomodulin must have been even 
lower than 3 nM. 

At these low concentrations, tropomodulin does not 
weaken the association of tropomyosin with actin as previ- 
ously reported (Fowler, 1990). This effect requires consider- 
ably higher concentrations of free tropomodulin than used 
in these experiments (Ki • 0.5/~M), and it is presumably 
caused by tropomodulin binding to the end of tropomyosin 
molecules and weakening their head-to-tail overlap. 

Surprisingly, the presence of tropomyosin alters the time 
course of elongation at the pointed end (Fig. 5 A). This is 
quite noticeable when the filaments contain tropomyosin 
alone and is accentuated further by the addition of tropomod- 
ulin. The time course of elongation at the pointed ends of 
filaments made from pure actin can be predicted from the ex- 
pression 

rate = k+ (uncapped pointed ends) [(G-actin) - 
critical concentration], 

where k+ (uncapped pointed ends) is constant and [( G-actin 
- critical concentration], i.e., polymerizable actin, 
decreases exponentially with time. Thus, in the absence of 
tropomyosin, a plot of In [(G-actin) - critical concentra- 
tion] vs time is a straight line (Fig. 5 B). (Only when the crit- 
ical concentration is being approached the rate deviates as 
if a change in rate constant had occurred [Weber et al., 
1987b].) By contrast, in the presence of tropomyosin, the 
slope decreases with time, and if tropomodulin is also pres- 
ent, the slope eventually becomes quite flat. The data suggest 
a change in the behavior of the pointed filament ends during 
the assay, presumably a decrease in k+ during the elonga- 
tion measurements. This is quite unexpected, considering 
that the filaments had been preincubated in the same medium 
with tropomyosin and tropomodulin for 20 h before the elon- 
gation assay. A decrease in the concentration of filament 
ends by annealing is unlikely in view of the capping of the 
barbed filament ends by gelsolin. 

In the presence of tropomyosin, the action of tropomodulin 
on elongation (and depolymerization) was very sensitive to 
the manner of assembling the three proteins. Inhibition of 
elongation and depolymerization was maximal when tropo- 
myosin and tropomodulin were copolymerized with actin, 
usually during a 15-20-h period. Incubation of preassem- 
bled gelsolin-capped actin filaments with tropomyosin and 
tropomodulin during the same length of time produced a 
weaker and more variable inhibition (data not shown). This 
is presumably because during copolymerization rapid bind- 
ing of two tropomyosin molecules to each newly assembled 
stretch of 14 actin monomers of an elongating actin filament 
insures the formation of an uninterrupted tropomyosin poly- 
mer on each actin strand. By contrast, the addition of 
tropomyosin to preformed actin filaments can result in the 
simultaneous formation of head-to-tail oligomers at many 
different sites all along the actin filament. In this case, it is 
likely that many or most oligomers cannot fuse into one 
polymer because the vacant spaces between them are too 
small to accommodate a connecting tropomyosin molecule. 
The oligomers cannot easily rearrange themselves along the 

length of the filament, a situation that has been referred to 
as ~'the parking problem" (Wegner, 1979). Thus, the require- 
ment for copolymerization of actin with tropomyosin sug- 
gests that blocking of elongation by the combined action of 
tropomodulin and tropomyosin might require the presence of 
an uninterrupted tropomyosin polymer on the actin filament. 
This interpretation is supported by our observations many 
years ago (Bremel et al., 1972) that the reconstitution of fully 
calcium regulated actin filaments, which depends on the 
presence of an uninterrupted tropomyosin polymer on the 
actin filament, required the copolymedzation of actin with 
tropomyosin and troponin and could not be accomplished by 
the addition of these regulatory proteins to polymerized 
actin. 

Depolymerization in the Presence of Tropomyosin and 
Tropomodulin. It has been shown previously that in high 
concentrations tropomyosin alone or combined with tropo- 
nin strongly inhibits depolymerization from the pointed fila- 
ment end (Broschat et al., 1989, 1990; Weigt et al., 1990). 
At a tropomyosin concentration too low to block depolymer- 
ization, the further addition of tropomodulin completely ar- 
rests depolymerization after the initial relatively rapid depo- 
lymerization of a small amount of actin (Fig. 6). In one 
experiment (data not shown), we followed the fluorescence 
for >3 d and found that there was no further decrease be- 
tween 24 and 96 h. Centrifugation confirmed that the re- 
maining fluorescence reflected polymerized actin and was 
not caused by denaturation of pyrenyl-actin (which can raise 
pyrenyl fluorescence about threefold): the fluorescent mate- 
rial could be spun down by a 2-h centrifugation at 120,000 g. 

We have also observed cessation of depolymerization at 10 
times lower concentrations of tropomodulin than shown here 
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Figure 6. Time course of depolymerization at the pointed end of 
tropomyosin - actin filaments with and without tropomodulin. The 
ordinate (fluorescence) gives the natural logarithm of the fraction 
of the remaining F-actin. The assay was carded out as described 
for Fig. 2, except that the actin filaments (average length of 100 
molecules per filament) had been copolymerized with tropomyosin 
and, when present, tropomodulin (2.4/~M during copolymeriza- 
tion). Final concentrations in the assays were: actin 0.5 ~M, tropo- 
myosin and tropomodulin, 90 nM and 200 nM, respectively, in ex- 
cess over the bound proteins. The 24-h endpoints correspond to 
15% remaining F-actin in the presence of tropomyosin and to 70% 
remaining F-actin in the presence of tropomyosin and trepo- 
modulin. 
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(15 and 25 riM, data not shown). At these lower tropomodu- 
lin concentrations, depolymerization started out relatively 
fast, although slower than the control rate, and more actin 
had been depolymerized before depolymerization was ar- 
rested. 

Tropomodulin Has No Effect on Actin Association 
with the Barbed End of  the Actin Fiiament in the 
Absence or Presence of  Tropomyosin 

The interaction of tropomodulin with the pointed end is 
specific since tropomodulin does not cap the barbed ends of 

o 
0 

6 
0 e .  

0 

P 
o 

L 

W 

O 
e -  

Q 

O 

f f J  

2 
o 

If. 

200 A 

160 

120 

80 

40 

0 

0 

1600 - 

1200 

800 

400 

f 
v 

A 

0 " 0 

• i • m - m - i - m , s - i • 

4 8 12 16 20 24  28  

min 

0 A • 

0 I u 
o s'o 200 

min 

Figure 7. Effect of tropomodulin on the time course of elongation 
of actin filaments at the barbed end. (A) In the absence of tropo- 
myosin. Elongation was started by the simultaneous addition of 
spectrin-actin complexes and polymerizing salts to a solution con- 
taining 0.5 ttM G-actin (10% pyrenyl-actin) in the absence (closed 
circles) or presence of 10/zM tropomodnlin (open circles). (B) In 
the presence of tropomyosin. Elongation was started by the simul- 
taneous addition of polymerizing salts and of preelongated spec- 
trin-actin complexes (1.6 nM final concentration) (see Materials and 
Methods) to a solution containing 1.6/tM G-actin (10% pyrenyl- 
actin), 200 n_M tropomyosin, and 500 nM tropomodulin when pres- 
ent, both in excess over that introduced with the preelongated 
spectrin-actin complexes. (Closed circles) controls; (open trian- 
gles) tropomyosin only; (open circles) tropomyosin and tropo- 
modulin. 

actin filaments. For these experiments, we used spectrin- 
actin complexes that have free barbed ends that can serve as 
nuclei for elongation (Fig. 7 A). To evaluate the effect of 
tropomodulin on tropomyosin-containing actin filaments, we 
preelongated spectrin-actin complexes to a filament length 
that accommodated, on the average, about three tropomyosin 
molecules per filament. These experiments showed that 
tropomodulin did not inhibit the rate of elongation at the 
barbed filament end (Fig. 7 A), even when combined with 
tropomyosin (Fig. 7 B), which greatly lowers the concentra- 
tion of tropomodulin necessary for the inhibition of elonga- 
tion at the pointed filament end (see above). Furthermore, 
tropomodulin did not increase the critical concentration, 
i,e., decrease the final extent of polymerization (Fig. 7), as 
would have been expected if it had capped the barbed fila- 
ment ends (see also Fig. 3). 

These data also serve as a control for the validity of the 
fluorescence measurements: tropomodulin did not affect the 
fluorescence of pyrenyl-actin in either the monomeric or 
polymeric state. 

Discussion 

Tropomodulin is a capping protein for the pointed filament 
ends of tropomyosin-containing actin filaments. That is, 
tropomodulin in concentrations stoichiometric to the con- 
centration of filament ends blocks elongation and depoly- 
merization in the presence of tropomyosin. At much higher 
concentrations, tropomodulin alone partially inhibits elon- 
gation and depolymerization of pure actin filaments, indicat- 
ing that it also has a binding site for actin. K0 values de- 
rived from the inhibition of the elongation rates of pure actin 
filaments range between 0.1 and 0.4 #M. Since the K0 of 
tropomodulin binding to tropomyosin is also 0.2 #M (Bab- 
cock and Fowler, 1994), the tight capping of the tropomyo- 
sin-containing actin filaments (K~ < 1 nM) suggests that 
tropomodulin binds to both the terminal tropomyosin and the 
terminal actin molecule. 

Tropomodulin binds to actin molecules only when they are 
incorporated into the pointed filament ends: tropomodulin 
does not sequester actin monomers as shown here, and it 
does not bind alongside actin filaments as shown previously 
by sedimentation experiments with spontaneously polymer- 
ized actin (Fowler, 1990). Since actin forms very long fila- 
ments in the absence of a nucleating protein, the amount of 
tropomodulin bound to the pointed filament ends would have 
been undetectable in these experiments. 

One way to explain partial inhibition of elongation and de- 
polymerization of pure actin filaments at saturating concen- 
trations of tropomodulin is that tropomodulin does not cap 
both actin strands at the pointed filament end. For instance, 
if tropomodulin binds loosely to oniy one of the two actin 
molecules at the pointed filament end and dissociates faster 
than the rate of actin monomer addition or loss, elongation 
or depolymerization will continue at a reduced rate. Indeed, 
one tropomodulin per filament end was found in a prelimi- 
nary binding experiment using gelsolin-capped actin fila- 
ments (Fowler, V. M., unpublished observations). This may 
be because there is not enough room at the filament end for 
two tropomodulin molecules, as seems to be the case for the 
other pointed-end-capping protein, DNase I (Weber et al., 
1994). Alternatively, tropomodulin may prefer one of the 
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two actin molecules at the pointed filament end over the 
other. For example, tropomodulin may prefer the monomer 
added last to the pointed end because it might contain a 
different nucleotide (ATP or ADP.Pi) than the penultimate 
monomer. Partial capping has been observed previously 
only for insertin, a barbed end-capping protein whose mech- 
anism of action is not fully understood (Ruhnau et al., 1989; 
Gaertner and Wegner, 1991). 

An unusual effect of tropomodulin, which has not been ob- 
served previously for any other capping protein, is the dou- 
bling of the critical concentration at the pointed filament 
end. (Effects of barbed-end capping proteins on critical con- 
centration are caused by the shift of the critical concentration 
from that of the barbed filament end to that of the pointed 
filament end when the barbed ends are completely capped.) 
The extent of the tropomodulin-induced increase in critical 
concentration is consistent with the different extents of inhi- 
bition of actin monomer binding and release at the filament 
end: tropomodulin inhibits the rate of elongation about twice 
as much as the rate of depolymerization. It is intriguing to 
speculate that these effects could result from the sensitivity 
of tropomodulin-actin binding to the nucleotide content of 
actin, as proposed above, since the rate constants for mono- 
mer binding and release and the critical concentrations are 
different for ADP-actin than for ATP-actin (Carlier, 1991; 
Pollard, 1990). In this regard, a number of other actin- 
binding proteins have been shown to be sensitive to the 
nucleotide content of actin. Gelsolin, for example, binds 
more strongly to ADP- than to ATP-actin (Laham et al., 
1993), and thymosin-~4 prefers ATP-actin monomers 50- 
fold over ADP-actin monomers (Carlier, 1991). 

In the presence of tropomyosin, tropomodulin completely 
caps the pointed filament ends and does not increase the crit- 
ical concentration at the pointed filament end. As discussed 
above, it is likely that tropomyosin provides a second binding 
site for tropomodulin at the pointed end, thus increasing the 
affinity of tropomodulin for the pointed end (Kd ~< 1 nM). 
In this case, a very slow rate of tropomodulin dissociation 
with respect to the rate of actin monomer addition would be 
expected, thus blocking elongation completely. Although we 
find that tropomyosin alone partially reduces elongation at 
the pointed filament end 2 (for contrary results see Broschat, 
1990; Hitchcock-DeGregori et al., 1988), the extent of inhi- 
bition is not as large as in the presence of tropomodulin. 
Thus, it seems likely that tropomodulin participates directly 
in the blocking of elongation at the pointed ends of tropo- 
myosin containing actin filaments. 

On the other hand, complete arrest of depolymerization 
from the pointed filament end can be caused by high concen- 
trations of tropomyosin considerably in excess of the amount 
necessary to saturate the actin filaments (Broschat, 1990). 2 
The presence of tropomodulin lowers the concentration of 
tropomyosin needed to arrest depolymerization. This might 
be explained by tropomodulin strengthening the binding of 
the terminal tropomyosin molecule to the pointed end of the 
actin filament. With only one instead of two head-to-tail 

2. The inhibitory effects of tropomyosin on elongation and depolymeriza- 
tion at the pointed filament end are not caused by trace contamination by 
tropomodulin since preincubation of tropomyosin at 85°C (which abolishes 
tropomodulin's activity) has no effect on the activity of the tropomyosin 
(Weber, A., and V. M. Fowler, unpublished observations). 

overlaps, the terminal tropomyosin molecule is bound con- 
siderably more weakly to the actin filament than are the 
tropomyosin molecules in the interior of the tropomyosin 
polymer. 

How can one extrapolate from these properties of tropo- 
modulin to its role in the cell? The data presented in this re- 
port together with the results from previous immunolocali- 
zation experiments show that tropomodulin is specifically 
associated with the pointed ends of the tropomyosin-contain- 
ing actin filaments in skeletal muscle (Fowler et al., 1993), 
cardiac muscle (Gregorio, C. C., and V. M. Fowler, unpub- 
lished observations), and in human red blood cells (Ursitti 
and Fowler, 1994). In cardiac muscle cells, the length of the 
tropomyosin-actin filaments varies over about a twofold 
range (Robinson and Winegrad, 1979; Kruger et al., 1991). 
Tropomodulin might play a role in maintaining this length 
distribution, which is relatively narrow compared to the ex- 
ponential length distribution of pure actin filaments in vitro. 
In skeletal muscle, the virtually identical length of the actin 
filaments has been proposed to be caused by the presence of 
nebulin (Labeit et al., 1991; Kruger et al., 1991). However, 
tropomodulin could protect against filament elongation un- 
der conditions, should they occur, where the monomer con- 
centration exceeds the critical concentration for the pointed 
end. 

In the red blood cell, the actin filaments are thought to 
contain only ~15-20 actin molecules each, 8-10 per fila- 
ment strand (Shen et al., 1986). Such short filaments can ac- 
commodate only two tropomyosin molecules, one for each 
strand (Fowler and Bennett, 1984). Thus in this case, 
tropomodulin could increase the strength of tropomyosin 
binding to these filaments. Without head-to-tail overlap, di- 
rect tropomyosin binding to the minifilament is expected to 
be very weak. Although the barbed ends of these tropo- 
myosin-containing actin filaments are not reported to be 
capped (Pinder et al., 1986), capping of their pointed ends 
by tropomodulin could prevent filament annealing and length 
redistribution that might otherwise occur. 

In motile cells such as neutrophils, which polymerize a 
large amount of actin within 15 s after exposure to formyl- 
peptides (Wallace et al., 1984), one can envision a function 
for the tropomodulin-induced increase in the critical concen- 
tration at the pointed filament end of pure actin filaments. 
When the barbed filament ends are capped, e.g., in resting 
neutrophils, the tropomodulin-induced increase in the con- 
centration of free actin monomer would lead to an increase 
in the size of the pool of bound actin monomer. Since the ac- 
tin-thymosin-/34 complex is in equilibrium with the concen- 
tration of free monomeric actin, the amount of actin mono- 
mer bound by a given total concentration of thymosin-B4 
would increase with increasing free monomeric actin (Weber 
et al., 1992). A larger pool of thymosin-/34-bound actin 
monomer would provide more actin for rapid polymerization 
after stimulation of the neutrophils. 
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